Small field size dose-profile measurements using MAGIC- f polymer gel dosimeter and EBT3 film dosimeter

Authors

  • Ahmad Mostaar Medical Physics and Biomedical Engineering Department, Shahid Beheshti University of Medical sciences, Tehran, Iran
  • Mohammad Houshyari Radio-Oncology Department, ShohadaeTajrish hospital, ShahidBeheshti University of Medical sciences, Tehran, Iran
  • Saeede Amiri Medical Physics and Biomedical Engineering Department, Shahid Beheshti University of Medical sciences, Tehran, Iran
Abstract:

Introduction: In radiotherapy, treatment planning methods are evaluating and transforming every day, so precision in calculation and determination of dose delivery process is performing more important role in radiotherapy than past. In modern radiotherapy treatments, deramatically increase of small fields utilization, causes the polymeric gels has known as the most reliable dosimeter for this kind of fields. Polymer gel dosimeters contain radiation sensitive materials that are irradiated as a function of polymerized absorbed dose, and the spatial information of the radiation dose distribution is extracted by imaging the irradiated gel. In this study, the polymeric system dosimeters performance MAGIC-f gel which obtained from the MRI imaging method, were compared with the EBT3 film dosimeter. Materials and Methods: A polymer gel type called MAGIC-f was applied in this study is as the same as type of polymer used in Fernandes et al study. After preparing the required gel and pouring it into phantoms and calibration tubes, they were irradiated with 6 MV photon beam, then dose distribution R2 maps were obtained by (3T MRI) taking MR images of them. Dicom images and necessary parameters were extracted by MATLAB and imagej software. The dose-profile was measured for three small field size (5,10,15 mm diameters) by using polymer gel compared with results of the EBT3 film dosimetry. Results: With Comparing the obtained results of two dosimeters, the maximum difference between the measured profiles was observed in penumbra areas (out of range). In these regions, the penumbra which measured by MAGIC-f was almost 1 mm larger than the measured width of penumbra by EBT3 film dosimeter. The maximum variation was seen in the flat area (isodose 90%) of the 0.5×0.5 cm2 dose profile curve was 4.68%. In the 1×1 and 1.5×1.5 cm2 fields, the greatest difference in the flat area of dose profile curve was 3.04% and 4.48%. Conclusion: In summarize MAGIC-f gel is more convenient and stable dosimeter than film for small fields studies. Moreover, it has a substantial potential for utilization as a 3D dosimeter in clinical applications of radiation therapy. Differences in the cross-sectional dose profile curves between polymer gel dosimeters (MAGIC-f) and film EBT3 can explain by various factors, such as way of preparing gel, materials quality which used in gel composition, and the quality of the imaging system.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Small field size dose-profile measurements: A comparison between Eclipse™ treatment planning system with NIPAM polymer gel dosimeter dose measurement

Introduction: Three physical conditions caused an external beam designated as a small field. The first is the loss of lateral charged particle equilibrium. The second is the effect of collimators on the primary photon source occlusion. The third condition is the size of the detector which is large compared to the field size. The most obvious perturbation effects in last condit...

full text

Evaluation of MRI-based MAGIC polymer gel dosimeter in small photon fields

Background: Accurate small radiation field dosimetry is essential in modern radiotherapy techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). Precise measurement of dosimetric parameters such as beam profile, percentage depth doses and output factor of these beams are complicated due to the electron disequilibrium and the steep dose gradients. In the p...

full text

evaluation of mri-based magic polymer gel dosimeter in small photon fields

background: accurate small radiation field dosimetry is essential in modern radiotherapy techniques such as stereotactic radiosurgery (srs) and intensity modulated radiotherapy (imrt). precise measurement of dosimetric parameters such as beam profile, percentage depth doses and output factor of these beams are complicated due to the electron disequilibrium and the steep dose gradients. in the p...

full text

Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter

Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was use...

full text

Dose response evaluation of a low density anoxic polymer gel dosimeter using MRI

Background: The human body contains of different tissues and cavities with different physical and radiological properties. Most important among these are tissues and cavities that are radiologically different from water, including lungs, sinuses and bones. Gel dosimetry provides a unique feature to display dose distributions occurring in clinical radiation therapy in three dimensions. Materials...

full text

Dose integration and dose rate characteristics of a NiPAM polymer gel MRI dosimeter system

The normoxic polymer gel dosimeter based on N-isopropyl acrylamide (NiPAM) is a promising full 3D-dosimeter with high spatial resolution and near tissue equivalency. NiPAM gel samples were irradiated to different doses using a linear accelerator. The absorbed dose was evaluated using MRI and statistical significance of the analysed data was calculated. The analysis was carried out using an in-h...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue Special Issue-12th. Iranian Congress of Medical Physics

pages  274- 274

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023